Abstract
Lattice preferred orientations (LPO) of quartz have been investigated along a south–north oriented section across the Plattengneis of the Koralm Complex (Eastern Alps). The Plattengneis forms an important shear zone within the Austroalpine nappe complex of the Eastern Alps, which has developed during the Cretaceous evolution of the Alpine orogen. The quartz c-axes form small circle distributions in the southernmost parts of the Koralm Complex, which represent the uppermost structural level of the Plattengneis. Further to the North two maxima between the Y and Z directions of the finite strain can be interpreted in terms of preferred slip on the rhomb planes. These fabrics continuously grade into (type I and type II crossed) girdle distributions in a northward direction. A strong maximum near the Y-axis with the tendency to be distributed along a single girdle, with three corresponding maxima of a-axes near the margin of the pole figure, can be observed in the central and northern parts. Such LPO are characteristic for both high grade metamorphic conditions and high finite strain. The microstructures display that the deformation within the Plattengneis shear zone was synmetamorphic. A continuous increase of peak temperatures (and pressure) from approximately 550 °C to approximately 750 °C from the South to the central parts can be inferred from geothermometric calculations. The temperatures then decrease to approximately 650 °C from the central parts to the North. The related pressures increase from 8 to 16 kbar, and then decrease to 10 kbar. The LPO changes that have been observed in the study area are best interpreted in terms of temperature dependence of the activation of glide systems within quartz aggregates. The temperature and pressure evolution may indicate that the central parts of the Koralm Complex have been exhumed by larger amounts than the northern and southern parts. This is also documented by the LPO evolution. Therefore, we assume that the Plattengneis shear zone formed during the exhumation of the Koralm Complex, and is related to the exhumation of high-pressure units in the footwall of this shear zone. Accordingly, the kinematics of the Plattengneis shear zone is rather extensional than thrust-related. The implications for the structural evolution of the Eastern Alps are shortly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.