Abstract
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of ∼1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of ∼2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is ∼24 km at the onset of rifting and reaches values less to ∼8 km during the second rifting stage in the northeastern end of the margin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.