Abstract

The Fula Sub-basin of the Muglad Basin of southern Sudan is an active-fault bounded basin with an area of approximately 3300 km2. The Lower Cretaceous Abu Gabra Formation formed during the first of three rifting cycles. It can be subdivided into five 3rd-order sequences named SQA∼SQE from bottom to top, indicating five stages of tectonostratigraphy and tectonosedimentary evolution. The spatial distribution and temporal evolution of clastic depositional systems are described in this paper based on integrated analysis of seismic, core and well logging data. In the Abu Gabra Formation of the Fula Sub-basin, a variety of depositional systems are recognized, namely, fan delta, braided delta, delta, sublacustrine fan and lacustrine system. The Fula Sub-basin has undergone a complex and phased rifting evolution, and a high abundance of transfer zones developed, causing the resulting distribution and architecture of both the sequence and depositional system to be controlled by various types of transfer zones. The following three types of sequence architectures from northern to southern part of the Fula Sub-basin have been identified: simple dustpan-shaped sequence architecture in the north, transfer-zone sequence stratigraphic architecture in the middle and graben-shaped sequence architecture in the south. The sequence architecture is under the control of the large-scale central transfer zone, and nine models are built to study the effect of at least three categories of small-scale transfer zones on the depositional systems in the Fula Sub-basin. The small-scale transfer zones play significant roles in basin fill, primarily in controlling of the positions of deposit-input points. This study provides valuable insights into tectonic control of depositional systems and sequence architectures in a continental rift basin such as the Fula Sub-basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call