Abstract

The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite–actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T=300°C and P=5kbar), and low-P/high-T type amphibolite facies schist and gneiss (T=600°C and P<5kbar) associated with granodioritic plutons (Tia granodiorite). White mica and biotite K–Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K–Ar age mapping along a N–S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339Ma) to the highest-grade zone (259Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K–Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K–Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.