Abstract

AbstractThe Vardar Zone documents the Mesozoic-Early Cenozoic evolution of several small oceanic basins and a complex history of terrane assembly. Following a Hercynian phase of deformation and granitic intrusion within the Pelagonian Zone to the west, the Vardar Zone rifted in Permian-Triassic time, with the creation of an oceanic basin (Almopias Ocean) during the Late Triassic-Early Jurassic. During the Mid-Jurassic, this ocean subducted northeastwards beneath the Paikon Zone and the Serbo-Macedonian Zone, giving rise to arc volcanism and back-arc rifting. A second ocean basin, the Pindos Ocean, opened to the west of a Pelagonian microcontinent, also during Late Triassic-Early Jurassic time. During the Mid-Late Jurassic, ophiolites were emplaced northeastwards (in present co-ordinates) from the Pindos Ocean onto the Pelagonian microcontinent, forming the Pelagonian ophiolitic mélange within a flexural foredeep. This emplacement is dated at pre-Late Oxfordian-Early Kimmeridgian from the evidence of corals within neritic carbonates that depositionally overlie the emplaced ophiolitic rocks in several areas. Related greenschist- or amphibolite-facies metamorphism is attributed to deep burial following trench-margin collision and the attempted subduction of the Pelagonian continent. An inferred phase of NNW-SSE displacement, also of pre-latest Jurassic age, imparted a regionally persistent stretching lineation and related ductile fabric, apparently related to post-collisional strike-slip. The Pelagonian Zone and its emplaced ophiolitic rocks then underwent extensional exhumation during Late Jurassic-Early Cretaceous time. The western margin of the Vardar Zone experienced extensional (or transtensional) faulting, neritic carbonate and terrigenous clastic deposition, and intermediate-silicic magmatism during Late Jurassic-Early Cretaceous time. Oceanic crust (Meglenitsa Ophiolite) formed further east in the Vardar Zone during Late Jurassic-Early Cretaceous time, possibly above a subduction zone. A near-margin setting is suggested by the presence of a deep-water terrigenous cover, probably derived from the Paikon continental unit to the east. The Vardar Zone as a whole finally closed related to eastward subduction beneath Eurasia, culminating in collision with the Pelagonian microcontinent during latest Cretaceous-Eocene time, as recorded in foreland basin development, HP-LT metamorphism, ophiolite emplacement and large-scale westward thrusting. In contrast to models that suggest closure of the Vardar Ocean in the Mid-Late Jurassic, followed by reopening of a Cretaceous ocean, we believe that the Vardar Ocean remained partly open from Triassic to Late Cretaceous-Early Cenozoic time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call