Abstract

The global mid-ocean ridge system is one of the most striking geological features on the surface of the Earth. In this system, the East Pacific Rise (EPR) is the fastest spreading ridge and is thus considered as the most active magmatically among the plate boundaries. In January and February of 1988, an extensive survey by the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution was conducted along the EPR between 9°05' and 9°55'N to study the crustal structure of the axial region. This thesis, the result of that cruise, comprises four main topics: (1) characterization of normal faulting from Sea Beam bathymetric data, (2) application of mechanical models to explore the hypothesis that buoyancy arising from crustal magma chambers and gravitational spreading of the upper crust are the principal processes leading to the initiation and development of normal faults, (3) investigation of seafloor magnetization anomalies to constrain upper crustal structure, and (4) analysis of gravity anomalies to examine possible correlations between observed variations in seafloor manifestations of volcanism and deformation and underlying structure. Thus, each topic focuses on different levels of the mid-ocean ridge. Together with the results of seismic and other observations, the findings are woven into a better understanding of the tectonic processes and structure of fastspreading mid-ocean ridges. First, to understand the characteristics of normal faults at fast-spreading ridges, we utilized swaths of Sea Beam bathymetry and estimated the distribution and geometry of normal fault zones using the slope of the seafloor as the criterion for a faulted surface. In our survey area, nonnal fault activity begins 2-8 km off-axis and continues at least to 30-40 km from the axis, as indicated by an increase in the total and average throws of normal fault zones versus distance from the axis. There appears to be no significant difference in the plan-view area of inward- and outward-facing nonnal fault zones. The distance from the rise axis to the nearest large-offset fault zone (throw > 20 m) on either side of the axis is approximately symmetric to the north of 9°23'N, but the midpoint between nearest largeoffset fault zones is offset 2-3 km to the west of the bathymetric axis to the south of 9°23'N. The continued growth of nonnal fault zones suggests that significant extensional stress persists to greater distances from the axis than previously thought and that the rise axis possesses a finite strength. The argument that the rise axis has finite strength is consistent with recent evidence for solidified axial dikes along magmatically active portions of the EPR from near-bottom seismic refraction experiments, which suggests that, while eruption of magma at the rise axis weakens the axis, the persistence of such weak zones is short-lived and the emplacement zones at any given time are localized along the axis. We examined how the presence of a low-density, low-strength magma chamber…

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call