Abstract

This thesis investigates the interactions between tectonics and erosion in the eastern Himalaya through the study of paleo-Brahmaputra deposits in the foreland basin. Sediment depositional dating of two sedimentary sections is performed using magnetostratigraphy, apatite fission-track and luminescence dating. Provenance analysis using zircon and apatite U-Pb dating allows the reconstruction of the Miocene-Quaternary paleo-drainage of the Brahmaputra River and the documentation of the tectonic evolution of two poorly understood Himalayan features: the Shillong Plateau and the Namche Barwa Syntaxis. The Shillong Plateau is the only elevated topography in the Himalayan foreland and the timing of its surface uplift is debated. Decoupling between of the time of rock exhumation and surface uplift has been explained by differences in rock erodibilities of the plateau between the Shillong Precambrian basement and the overlying Cenozoic sedimentary rock. New detrital zircon U-Pb data and lithospheric stress field modelling presented here date the rise of the Plateau between 5.2 Ma and 4.4 Ma leading to the redirection of the Brahmaputra River at that time, and the role of tectonics in the rise of the plateau is invoked. The Namche Barwa syntaxis is located at the eastern Himalayan termination and its development is widely debated. It has been subjected to anomalously young ( 10 Ma) of rapid exhumation, and at high but not extreme rates (<5 mm/yr).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call