Abstract

AbstractFluid-pressure cycles are commonly invoked to explain alternating frictional and viscous deformation at the base of the seismogenic crust. However, the stress conditions and geological environment of fluid-pressure cycling are unclear. We address this problem by detailed structural investigation of a vein-bearing shear zone at Sagelvvatn, northern Norwegian Caledonides. In this dominantly viscous shear zone, synkinematic quartz veins locally crosscut mylonitic fabric at a high angle and are rotated and folded with the same sense of shear as the mylonite. Chlorite thermometry indicates that both veining and mylonitization occurred at ∼315–400 °C. The vein-filled fractures are interpreted as episodically triggered by viscous creep in the mylonite, where quartz piezometry and brittle failure modes are consistent with low (18–44 MPa) differential stress. The Sagelvvatn shear zone is a stretching shear zone, where elevated pressure drives a hydraulic gradient that expels fluids from the shear zone to the host rocks. In low-permeability shear zones, this hydraulic gradient facilitates build-up of pore-fluid pressure until the hydrofracture criterion is reached and tensile fractures open. We propose that hydraulic gradients established by local and cyclic pressure variations during viscous creep can drive episodic fluid escape and result in brittle-viscous fault slip at the base of the seismogenic crust.

Highlights

  • A long-established and fundamental aspect of the deformation of geological materials is that it generates spatial and temporal variations in tectonic pressure (Casey, 1980; Mancktelow, 2002, 2008; Schmalholz and Podladchikov, 2013)

  • We show that pressure gradients resulting from viscous creep in the shear zone can result in cyclic and transient hydrofracturing and fluid expulsion during ongoing creep

  • If fluids are trapped in the shear zone because of low-permeability horizons at its margins, dynamic fluid pressure may locally approach, or in thrust faulting regimes even exceed, the lithostatic pressure (Fig. 3), triggering dilatant fracturing if differential stress is low (Sibson, 1998; Cox, 2010)

Read more

Summary

Introduction

A long-established and fundamental aspect of the deformation of geological materials is that it generates spatial and temporal variations in tectonic pressure (Casey, 1980; Mancktelow, 2002, 2008; Schmalholz and Podladchikov, 2013). CITATION: Menegon, L., and Fagereng, Å., 2021, Tectonic pressure gradients during viscous creep drive fluid flow and brittle failure at the base of the seismogenic zone: Geology, v. The shear zone is dominantly ductile (defined as spatially continuous deformation at the scale of observation), 1–5-cm-thick sigmoidal quartz veins, arranged en echelon, locally crosscut the mylonitic fabric, predominantly at a high angle

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call