Abstract
The Byrd Glacier discontinuity is a major tectonic boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consist of two-dimensional transects across the belt, but do not address the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic produced a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of a terrane (Beardmore microcontinent) during the latest Neoproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in support of this hypothesis are U-Pb dates of 545.7 ±6.8 Ma and 531.0 ±7.5 Ma on plutonic rocks from the Britannia Range, directly north of Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.