Abstract
We analyzed the paleostress field, ongoing deformation, meso- to micro-scale faulting, cataclasis, fault rock alteration and veining within turbidite and limestone sequences at the Ganos Fault which represent a major branch of the North Anatolian Fault Zone in NW Turkey. Fault damage was found to occur across a several kilometers wide zone. Effects of faulting are shown by localized subsidiary brittle faults and fault rock alteration in the turbidites as well as fault breccia formation in the limestone sequence. Microseismicity along the Ganos Fault cluster at two locations, the more pronounced being located offshore at a fault bend associated with a change from a transpressional to a transtensional regime. Kinematic analysis reveals a dextral strike-slip regime with components of normal and thrust faulting. Along strike paleostress orientation at the Ganos Fault is rather uniform. Deformation mechanisms and fluid inclusion data from quartz and calcite veins suggest that fault-related quartz veins were formed at temperatures between 170 and 250 °C and pressures between 40 and 120 MPa. Fault-related calcite vein growth occurred during a temperature decrease from 170 °C to 70 °C with pressures likely below 50 MPa. Fluid inclusion and stable isotope data show that the fluids are predominantly of meteoric origin and migrated upwards into the fault. Pure CH 4 inclusions in quartz also suggest a biogenic or thermogenic methane origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.