Abstract

We present the first evidence of an early Paleozoic terrane in the southern Yanbian region, NE China. We used LA-ICP-MS zircon U–Pb and Hf isotope techniques to analyze one plagioclase gneiss and two garnet-bearing two-mica quartz schists from the early Paleozoic Jiangyu Group, as well as two tonalites that intruded the Jiangyu Group. The tonalites yield weighted mean 206Pb/238U zircon crystallization ages of 423 and 422Ma. Zircons from the Jiangyu Group gneiss and two schist samples yield maximum depositional ages of 439±4, 443±2, and 443±5Ma, respectively. These constraints, together with the age of the tonalite intrusion, indicate that the Jiangyu Group was deposited between 443 and 423Ma (i.e., Silurian). In addition, detrital zircon age spectra of the three Jiangyu Group samples exhibit prominent age peaks at 442, 473, 513, 565, 600, 635, 671, 740, 1000, and 1162Ma, as well as secondary peaks between 1344 and 3329Ma. The occurrence of the prominent Meso- and Neoproterozoic detrital zircon age populations for the Jiangyu Group, combined with the corresponding zircon Hf isotopic data, reveals that the Jiangyu Terrane has a tectonic affinity with northeastern Gondwana. The early Paleozoic magmatism, as suggested by the medium-K calc-alkaline I-type tonalite intrusion and Jiangyu Group detrital zircon age spectra, corresponds to coeval subduction–accretion events along the southern margin of the eastern Central Asian Orogenic Belt (CAOB). Accordingly, we propose that the Jiangyu Group is part of an exotic terrane that rifted from northeastern Gondwana, drifted northward, and ultimately became involved in the early Paleozoic tectonic evolution of the southern margin of the eastern CAOB after the Early Cambrian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call