Abstract

This thesis examined how the oldest core of the Australian continent formed more than 3.5 billion years ago. Unraveling the complex tectonic and petrologic history of ancient rocks of the East Pilbara in Western Australia provided important new insights into how and why continents developed on our hot, young planet. A multifaceted methodology of field-based structural geology, uranium-lead (U-Pb) dating of zircon, whole-rock geochemistry, and petrology improved our understanding of early Archaean mass and heat transfer, including the history of the associated planetary surface environment, which hosted some of the earliest life on Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.