Abstract

Based primarily on geologic field observations as recorded by numerous geoscientists over the last three decades, backed by more recent geochemical, seismic, gravity, magnetic, tomographic, and satellite-based techniques, an integrated synthesis and interpretation of the tectonic assembly of the entire Northern Andean Block (the Andes of Ecuador, Colombia, and Venezuela) is presented. Tectonic reconstruction is based on the identification and characterization of more than 30 distinct lithotectonic and morphostructural units (including terranes, terrane assemblages, physiographic domains, etc.) and their bounding suture and fault systems, which, based on geologic, geophysical, and dynamo-tectonic considerations, define four distinct tectonic realms representing the entire Northern Andean region. These include the Guiana Shield Realm (GSR), the Maracaibo subplate Realm (MSP), the Central Continental subplate Realm (CCSP), and the Western Tectonic Realm (WTR). The GSR provided the backstop for the progressive, accretionary continental growth of northwestern South America in the middle–late Proterozoic, in the middle Paleozoic, and finally during the Mesozoic-Cenozoic Northern Andean orogeny. Middle Cretaceous through Miocene time slices illustrate how, beginning in the Aptian, the sequential dextral-oblique accretion of the allochthonous oceanic WTR along the Pacific margin acted simultaneously with the northwest migration of the MSP (a detached segment of the Guiana Shield) into and over the Caribbean plate, exerting enormous transpression upon the CCSP trapped between them. Each tectonic realm contributed distinct tectonic mechanisms during Northern Andean cause and response orogenesis, and each realm records a unique internal deformational style, which in large part provides the basis for realm definition. Additionally, based on lithologic, geochemical, and paleomagnetic data and paleogeographic reconstructions, the intimate and complementary Mesozoic-Cenozoic history of the Northern Andean Block and the Caribbean plate are recognized. The migratory path of the Caribbean plate along the western and northern margin of the South American craton, as recorded by the accretionary history of the allochthonous WTR, has been instrumental in the modern-day configuration of the Northern Andean Block. Throughout this paper, the importance and contribution of underlying Proterozoic through middle Mesozoic geostructural elements in the development of Mesozoic-Cenozoic Northern Andean orogeny-phase tectonic configuration (structural style, uplift mechanisms, basin development, magmatism, etc.) are stressed. Additionally, the complex reality of Northern Andean Block assembly is contrasted with classical Central Andean Cordilleran-type orogenic models, and numerous differences are illustrated that render the application of typical Cordilleran-type models unacceptable. These differences are exemplified by the highly oblique collision/accretion/subduction tectonics of allochthonous oceanic terranes in the WTR, the detachment, migration and plis de fond–style of deformation in the MSP and the unique, transpressive pop-up of the Eastern Cordillera in the CCSP, all of which have no geologic analog in the Central Andes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.