Abstract

Subduction of high bathymetric relief, such as aseismic ridges and magmatic plateaus, is considered to be responsible for dramatic changes in the dynamics and kinematics of the subduction zone. For example, the buoyancy of high bathymetric relief is thought to flatten the dip of the subducting slab, modifying the structural and magmatic evolution of the overriding plate and terminating arc volcanism. In addition, the effect of ridge subduction in retreating plate boundaries can inhibit subduction rollback, a process that could locally pin the subduction hinge and lead to the development of cusps and slab tearing. Here we discuss the tectonic response to subduction of high bathymetric relief using examples from the circum-Pacific subduction systems. We demonstrate that flattening of the subduction dip angle is only significant in the eastern Pacific, where the average slab dip angle is relatively shallow. In the western Pacific, in contrast, the average subduction dip angle is steeper and there is no significant flattening of the dip angle in areas of ridge subduction. Subduction of high bathymetric relief in the circum-Pacific is commonly associated with reduced arc volcanism, and in many cases, the area of ridge subduction coincides with a volcanic gap. In the overriding plate, ridge subduction is associated with pronounced changes in the style of deformation, involving uplift, reactivation of basement thrusts, development of orogen-perpendicular tear faults and block rotations leading to oroclinal bending. The discussed characteristic patterns associated with ridge subduction provide important guidelines for reconstructing past plate tectonic processes, and could help constraining the geodynamics of ancient subduction systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.