Abstract

AbstractChanges in sandstone and conglomerate maturity in tectonically active basins can be considered either as the product of climatic change or of tectonic restructuring of the feeder drainage system. Besides these regional controls, changes in the configuration of local sources can expressively affect basin fill composition. The Early Cretaceous fluvial successions of the Tucano Basin, a rift basin in northeastern Brazil related to the South Atlantic opening, contain one such case of abrupt change in maturity, marked by the passage from pebbly sandstone and conglomerate rich in quartz and quartzite fragments (Neocomian to Barremian São Sebastião Formation) to more feldspathic pebbly sandstone and conglomerate bearing pebbles of varied composition (Aptian Marizal Formation). Systematic analysis of stratigraphic and spatial variation in palaeocurrents and composition of pebbles and cobbles from both units, integrated with the recognition of fluvial and alluvial fan deposits distribution, revealed an abrupt decrease in maturity during the passage from the São Sebastião Formation to the Marizal Formation. This change is explained by exhumation of basement rocks and erosional removal of originally widespread Silurian to Jurassic sandstone and conglomerate units which were a major source of reworked vein quartz and quartzite pebbles to the São Sebastião Formation. Basin border faults activation during the deposition of the Marizal Formation caused adjacent basement uplift above the local erosional base level at the basin borders, whereas during the São Sebastião Formation deposition, the basin border fault scarps probably exposed mineralogically mature sedimentary units. The proposed model has important implications for interpreting changes in sediment maturity in rift basin successions, as similar results are expected where activation of basin border faults occurs after the erosional removal of older sedimentary or volcanic units that controlled syn‐rift successions composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call