Abstract
RNA is a promising biomaterial for self-assembly of nano-sized structures with a wide range of applications in nanotechnology and synthetic biology. Several RNA-based nanostructures have been reported, but most are unrelated to intracellular RNA, which possesses modular structures that are sufficiently large and complex to serve as catalysts to promote sophisticated chemical reactions. In this study, we designed dimeric RNA structures based on the Tetrahymena group I ribozyme. The resulting dimeric RNAs (tecto group I ribozyme; tecto-GIRz) exhibit catalytic ability that depended on controlled dimerization, by which a pair of ribozymes can be activated to perform cleavage and splicing reactions of two distinct substrates. Modular redesign of complex RNA structures affords large ribozymes for use as modules in RNA nanotechnology and RNA synthetic biology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.