Abstract

Every year, 700 million twenty-foot (container) equivalent units pass through the container terminals of the harbours all over the world. Only a small percentage (34%) are scanned to inspect the presence of radioactive materials. The need for controls is hampered essentially by three factors: the amount of both time and personnel necessary to control each container and the use of scanning methods based on systems potentially harmful for the personnel itself. Muon tomography can become a strategy for fast and reliable inspection of containers without using ionizing radiation. This technology takes advantage of multiple Coulomb scattering of the muons (particle produced by cosmic rays) through media to understand the composition and the geometry of the scanned volume. The TECNOMUSE project has the purpose to realize a muon tomography scanner based on a novel geometry and, for the first time, using Resistive Plate Chambers detectors. In this work, the preliminary results from the TECNOMUSE scanner are evaluated via Monte Carlo simulations. Many different simulations have been made with the aim to assess the detection capabilities of the device, its spatial resolution and the time required to reconstruct and distinguish different materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.