Abstract

Technology Update For more than 40 years, the industry has used pulsed neutron logging to determine hydrocarbon and water saturations behind casing for reservoir management. Multiphase saturation measurements over time are useful for tracking reservoir depletion, planning workover and enhanced recovery strategies, and diagnosing production problems such as water influx and injection fluid breakthrough. Cased-hole logs also serve as a contingency when openhole logs cannot be run or are not considered for reservoir characterization. Although the cased-hole measurement suite has been greatly improved over many tool generations, the intrinsic physical measurements remained unchanged, which meant that operators could not obtain a complete picture of the rock and fluids behind casing. Input from openhole logs was required from a porosity or bulk density measurement for combination with the neutron porosity. Absent this input, primary formation evaluation in cased wellbores can be ambiguous. An additional challenge with cased-hole logging is correctly compensating for the effects of borehole fluids and the presence of completion hardware. Next-Generation Logs To meet the need for accurate surveillance in cased holes, Schlumberger recently introduced the Pulsar multifunction spectroscopy system. The system builds on innovative technologies originated by the company to provide the first complete cased-hole formation evaluation and reservoir saturation monitoring capability with openhole-equivalent measurements. This next generation in pulsed neutron logging integrates multiple detectors and a high-output pulsed neutron generator (PNG) to significantly improve measurement precision, data acquisition accuracy, and logging speed. The measurements are complemented by powerful algorithms that compensate for variation in the borehole fluids and completion in delivering robust, representative answers in complex conditions. The PNG and four detectors are housed in a 1.72-in.-outside-diameter (OD) tool that is designed for through-tubing access and logging through most completion restrictions. The detector adjacent to the PNG is the compact neutron monitor, which is primarily sensitive to fast neutrons to provide accurate and precise output measurement. There are three scintillation gamma-ray detectors for near, far, and deep detection. The near and far detectors use cerium-doped lanthanum bromide (LaBr3:Ce) scintillators, and the deep detector, farthest spaced from the PNG, has an yttrium aluminum perovskite scintillator. The three gamma-ray detectors are coupled to high-temperature-rated photomultiplier tubes, and their pulses are counted with specialized electronics matched to the high rate and resolution of the LaBr3:Ce scintillators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call