Abstract

Technology Update In Australia’s Surat Basin, gas is contained in hundreds of coal seams, which have highly variable properties and are grouped into four distinct reservoir zones of similar qualities. Economically producing these wells from multiple reservoir units is generally favored and as a result, understanding the relative contribution to production by different zones at different times in the well’s life—and whether production is dominated by a single zone—adds value to planning future wells. The well designs are quite simple. An 8.5-in. wellbore is drilled from surface casing through the target coal seams. A 7-in. production casing and preperforated liner with an external casing packer and a cement stage tool is run to total depth. The external casing packer is deployed at the top of the reservoir, and the 7-in. casing is cemented in place through the stage tool above the packer. No external packers are installed between groups of coal seams (zones) to segregate production from each zone through the preperforated liner. Production tubing is installed in the well, which typically runs to the base of the preperforated liner, and a progressive cavity pump (PCP) is installed in the tubing to lift the water produced with the coal-seam gas (CSG) [dewater the well]. Gas production comes from the coal seams and flows around and through the preperforated liner, then up through the annular space, between the production liner/casing and the production tubing, to surface. The water flows to the bottom of the completion, where it is lifted up the production tubing by the PCP as shown in Fig. 1. Understanding Zonal Allocation Normally, production logging tools (PLTs) are run to obtain an understanding of zonal allocation in commingled wells. However, running PLTs in CSG wells can be expensive as it requires the PCP to be pulled out and the well to be lifted with gas. The switch to gas lift at shallow depth is not a normal operating condition and may affect the result. An additional issue is the unsegregated, openhole completion. With no external packers, neither the PLT tools nor the distributed-temperature sensor (DTS) fibers inside the liner can measure flow in the space between the liner and the sandface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call