Abstract

Smart grid is defined as the overlaying of a unified communications and control system onto the existing power delivery infrastructure to provide the right information and the right entity at the right time. It helps even out demand spikes and uses resource mix more efficiently. It is a better integration, or “system balancing,” of variable resources, like wind power. Many of the advanced applications of smart grid are expected to develop in an evolutionary manner based on current technologies available and the needs of the market, for example, electric vehicles (EVs) or plug-in hybrid electric vehicles (PHEVs). It is likely that we will see a simpler associated application (i.e., smart battery charger) before the market matures to support a more complex form of the application vehicle-to-grid (V2G). The objective of this paper is to develop a technology roadmapping (TRM) process for smart electric V2G technologies in Oregon and the Pacific Northwest (PNW). The research focuses on the application of V2G in the residential chargers. It introduces the market drivers, products, and technology analysis and also provides research on the necessary resources needed within R&D in the coming years (next 10 years).

Highlights

  • One million electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are expected to be in use by individuals and fleets by 2015 (United States Department of Energy 2011)

  • We analyzed the challenges for regional V2G roadmap between the current state of technology against the EV context

  • Based on current research and development in the V2G industry, we identified three categories as the primary drivers behind this technology roadmapping (TRM)

Read more

Summary

Introduction

One million electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are expected to be in use by individuals and fleets by 2015 (United States Department of Energy 2011). EVs can serve as an energy resource through vehicle-to-grid (V2G) operation by sending electricity back into the grid, thereby preventing or postponing load shedding (Kempton & Tomić 2005; Guille & Gross 2009a). Charging and V2G services must be optimized for grid load while guaranteeing owner schedule and range requirements are met. A system encompassing EV owner input via a mobile application, an aggregation middleware, a charge scheduling, and V2G operation algorithm, and radio-frequency identification (RFID) reader, is proposed (Ferreira et al 2011)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call