Abstract

Logic CMOS technology roadmap for ‘22 nm and beyond’ is described with ITRS (International Technology Roadmap for Semiconductor) as a reference. In the ITRS 2008 Update published just recently, there has been some significant change in the trend of the gate length. The predicted trend has been amended to be less aggressive from the ITRS 2008-Update, resulting in the delay in the gate-length shrinkage for 3 years in the short term and 5 years in the long term from those predicted in ITRS 2007. Regarding the downsize limit, it would take probably 20 to 30 years until we reach the final limit, because the duration between the generations will become longer when approaching the limit. In order to suppress the off-leakage current, double gate (DG) or fin-FET type MOSFETs are the most promising. Then, it is a natural extension for DG FETs to evolve to Si-nanowire MOSFETs as the ultimate structure of transistors for CMOS circuit applications. Si-nanowire FETs are more attractive than the conventional DG FETs because of higher on-current conduction due to their quantum nature and also because of their adoptability for high-density integration including that of 3D. Then, what will come next after reaching the final limit of the downsizing? The answer is new algorithm. In the latter half of this century, the application of algorithm used for the natural bio system will make the integrated circuits operation tremendously high efficiency. Much higher performance with ultimately low power consumption will be realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.