Abstract

BackgroundMany countries across the globe have released their own COVID-19 contact tracing apps. This has resulted in the proliferation of several apps that used a variety of technologies. With the absence of a standardized approach used by the authorities, policy makers, and developers, many of these apps were unique. Therefore, they varied by function and the underlying technology used for contact tracing and infection reporting.ObjectiveThe goal of this study was to analyze most of the COVID-19 contact tracing apps in use today. Beyond investigating the privacy features, design, and implications of these apps, this research examined the underlying technologies used in contact tracing apps. It also attempted to provide some insights into their level of penetration and to gauge their public reception. This research also investigated the data collection, reporting, retention, and destruction procedures used by each of the apps under review.MethodsThis research study evaluated 13 apps corresponding to 10 countries based on the underlying technology used. The inclusion criteria ensured that most COVID-19-declared epicenters (ie, countries) were included in the sample, such as Italy. The evaluated apps also included countries that did relatively well in controlling the outbreak of COVID-19, such as Singapore. Informational and unofficial contact tracing apps were excluded from this study. A total of 30,000 reviews corresponding to the 13 apps were scraped from app store webpages and analyzed.ResultsThis study identified seven distinct technologies used by COVID-19 tracing apps and 13 distinct apps. The United States was reported to have released the most contact tracing apps, followed by Italy. Bluetooth was the most frequently used underlying technology, employed by seven apps, whereas three apps used GPS. The Norwegian, Singaporean, Georgian, and New Zealand apps were among those that collected the most personal information from users, whereas some apps, such as the Swiss app and the Italian (Immuni) app, did not collect any user information. The observed minimum amount of time implemented for most of the apps with regard to data destruction was 14 days, while the Georgian app retained records for 3 years. No significant battery drainage issue was reported for most of the apps. Interestingly, only about 2% of the reviewers expressed concerns about their privacy across all apps. The number and frequency of technical issues reported on the Apple App Store were significantly more than those reported on Google Play; the highest was with the New Zealand app, with 27% of the reviewers reporting technical difficulties (ie, 10% out of 27% scraped reviews reported that the app did not work). The Norwegian, Swiss, and US (PathCheck) apps had the least reported technical issues, sitting at just below 10%. In terms of usability, many apps, such as those from Singapore, Australia, and Switzerland, did not provide the users with an option to sign out from their apps.ConclusionsThis article highlighted the fact that COVID-19 contact tracing apps are still facing many obstacles toward their widespread and public acceptance. The main challenges are related to the technical, usability, and privacy issues or to the requirements reported by some users.

Highlights

  • OverviewThe COVID-19 pandemic, the virus of which causes a highly contagious respiratory infection, has spread rapidly across the world and surpassed 20 million cases by early August 2020 [1]

  • The number and frequency of technical issues reported on the Apple App Store were significantly more than those reported on Google Play; the highest was with the New Zealand app, with 27% of the reviewers reporting technical difficulties

  • This article highlighted the fact that COVID-19 contact tracing apps are still facing many obstacles toward their widespread and public acceptance

Read more

Summary

Introduction

OverviewThe COVID-19 pandemic, the virus of which causes a highly contagious respiratory infection, has spread rapidly across the world and surpassed 20 million cases by early August 2020 [1]. The global public health and government responses to the pandemic have been fragmented due to the urgency of actions required as a result of the stochastic spread of the virus. Many countries across the globe have released their own COVID-19 contact tracing apps. This has resulted in the proliferation of several apps that used a variety of technologies. With the absence of a standardized approach used by the authorities, policy makers, and developers, many of these apps were unique. They varied by function and the underlying technology used for contact tracing and infection reporting. More evidence is required to demonstrate whether these tools were successful in contact tracing and to determine their usefulness

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.