Abstract

We are developing a kilopixel, filled bolometer array for infrared astronomy. The array consists of three individual components, to be merged into a single, working unit; 1) a transition edge sensor (TES) bolometer array, operating in the milliKelvin regime, 2) quarter-wave resonance backshorts, and 3) superconducting quantum interference device (SQUID) multiplexer readout. The detector array is a filled, square-grid of suspended, silicon membrane bolometers with superconducting thermistors. The spacing of the backshort beneath the detector grid can be set from ~30-300 microns by adjusting two process parameters during fabrication. We have produced prototype, monolithic arrays having 1 mm and 2 mm pitch detectors. The key technologies required for kilopixel arrays of detectors to be hybridized to SQUID multiplexer readout circuits have been demonstrated. Mechanical models of large-format detector grids have been indium bump-bonded to dummy multiplexer readouts to study electrical continuity. A monolithic array of 1 mm pitch detectors has been mated to a backshort grid optimized for a 350 micron resonant wavelength. Through-wafer microvias, for electroplated, low-resistance electrical connection of detector elements, have been prototyped using deep reactive ion etching. The ultimate goal of this work is to develop large-format (thousands of pixels) bolometer array architecture with background-limited sensitivity, suitable for a wide range of long wavelengths and a wide range of astronomical applications such as imaging, spectroscopy, and polarimetry and applicable for ground-based, suborbital, and space-based instruments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.