Abstract

The impact of deuterium on the Fischer-Tropsch (FT) synthesis was studied with a precipitated iron catalyst in the slurry phase. Deuterium has been used by several research groups to better understand the mechanism of CO hydrogenation. Inverse (k{sub H}/k{sub D} < 1), normal (k{sub H}/k{sub D} > 1) and no isotope effect (k{sub H}/k{sub D} = 1) have been reported. The conflicting results are thought to arise because rate of reaction is a combination of kinetic and equilibrium factors. In summary, the presence of boron produced only minor changes on the properties of the cobalt catalyst. In earlier studies, it was shown that the presence of boron made the catalyst less susceptible to poisoning by sulfur. Steady-state supercritical Fischer-Tropsch synthesis was studied in the work using a fixed-bed reactor and an unpromoted Co/SiO{sub 2} catalyst. This serves as the baseline for promoted catalyst studies. A pentane-hexane mixture was used as the supercritical solvent. Overall reactor pressure, syngas partial pressure and contact time were kept constant to obtain a valid comparison of the impact of solvent density in the catalytic activity and selectivity. Three different partial pressures of the mixture were chosen based on the density-pressure curve in order to investigate the pressure tuning effect to Fischer-Tropsch synthesis near critical region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.