Abstract

Since microdroplets are able to be generated rapidly in large amount and each droplet can be well controlled as an independent micro-cultivator, droplet microfluidic technology can be potentially used in the culture of microorganisms, and provide the microbial culture with high throughput manner. But its application mostly stays in the laboratory-level building and using for scientific research, and the wide use of droplet microfluidics in microbial technology has been limited by the key problems that the operation for microdroplets needs high technical requirements with wide affecting factors and the difficulties in integration of automatic microdroplet instrumentation. In this study, by realizing and integrating the complicated operations of droplet generation, cultivation, detection, splitting, fusion and sorting, we design a miniaturized, fully automated and high-throughput microbial microdroplet culture system (MMC). The MMC can be widely used in microbial growth curve test, laboratory adaptive evolution, single factor and multi-level analysis of microbial culture, metabolite detection and so on, and provide a powerful instrument platform for customized microbial evolution and screening aiming at efficient strain engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call