Abstract

To investigate the effect of technology-assisted Anterior Cruciate Ligament Reconstruction (ACLR) on post-operative clinical outcomes and tunnel placement compared to conventional arthroscopic ACLR. CENTRAL, MEDLINE, and Embase were searched from January 2000 to November 17, 2022. Articles were included if there was intraoperative use of computer-assisted navigation, robotics, diagnostic imaging, computer simulations, or 3D printing (3DP). Two reviewers searched, screened, and evaluated the included studies for data quality. Data were abstracted using descriptive statistics and pooled using relative risk ratios (RR) or mean differences (MD), both with 95% confidence intervals (CI), where appropriate. Eleven studies were included with total 775 patients and majority male participants (70.7%). Ages ranged from 14 to 54years (391 patients) and follow-up ranged from 12 to 60months (775 patients). Subjective International Knee Documentation Committee (IKDC) scores increased in the technology-assisted surgery group (473 patients; P = 0.02; MD 1.97, 95% CI 0.27 to 3.66). There was no difference in objective IKDC scores (447 patients; RR 1.02, 95% CI 0.98 to 1.06), Lysholm scores (199 patients; MD 1.14, 95% CI -1.03 to 3.30) or negative pivot-shift tests (278 patients; RR 1.07, 95% CI 0.97 to 1.18) between the two groups. When using technology-assisted surgery, 6 (351 patients) of 8 (451 patients) studies reported more accurate femoral tunnel placement and 6 (321 patients) of 10 (561 patients) studies reported more accurate tibial tunnel placement in at least one measure. One study (209 patients) demonstrated a significant increase in cost associated with use of computer-assisted navigation (mean 1158€) versus conventional surgery (mean 704€). Of the two studies using 3DP templates, production costs ranging from $10 to $42 USD were cited. There was no difference in adverse events between the two groups. Clinical outcomes do not differ between technology-assisted surgery and conventional surgery. Computer-assisted navigation is more expensive and time consuming while 3DP is inexpensive and does not lead to greater operating times. ACLR tunnels can be more accurately located in radiologically ideal places by using technology, but anatomic placement is still undetermined because of variability and inaccuracy of the evaluation systems utilized. Level III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.