Abstract

Historically, the off-state current <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> and the supply voltage <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Vdd</i> are specified as technology targets for Si metal-oxide-semiconductor field-effect transistors (MOSFETs) at each technology node. Emerging device technologies such as III-V transistors, carbon-nanotube FETs (CNFETs), and tunneling FETs (TFETs) are often targeted to outperform Si MOSFETs at the same <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Vdd</i> values. However, the conclusions from the conventional methodology are limited for advanced technology and diversified applications, when Dennard scaling is inefficient and different device structures are invented. We present a new device-technology assessment methodology based on energy-delay optimization, which takes into consideration key circuit-level information, such as logic depth, activity factors, and fanout (FO). Our methodology starts from device <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> - <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</i> - <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> characteristics and treat <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Vdd</i> as “free variables.” Together with device and supply-voltage variations, we obtain a corresponding and different optimal set of <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">I</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Vdd</i> and optimal energy-delay for each emerging device. We show that today's best available III-V transistors and CNFETs can outperform the best Si FETs by 1.5-2 and 2-3.5 times in terms of energy efficiency, respectively. Projected into the 10-nm-gate-length regime, III-V-on-insulator, CNFETs, and TFETs are 1.25, 2-3, and 5-10 times better than the International Technology Roadmap for Semiconductors target, for FO1 delays of 0.3, 0.1, and 1 ns, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.