Abstract
To evaluate whether combining fast acquisitions with deep-learning reconstruction can provide diagnostically useful images and quantitative assessment comparable to standard-of-care acquisitions for lumbar spine magnetic resonance imaging (MRI). Eighteen patients were imaged with both standard protocol and fast protocol using reduced signal averages, each protocol including sagittal fat-suppressed T2-weighted, sagittal T1-weighted, and axial T2-weighted 2D fast spin-echo sequences. Fast-acquisition data was additionally reconstructed using vendor-supplied deep-learning reconstruction with three different noise reduction factors. For qualitative analysis, standard images as well as fast images with and without deep-learning reconstruction were graded by three radiologists on five different categories. For quantitative analysis, convolutional neural networks were applied to sagittal T1-weighted images to segment intervertebral discs and vertebral bodies, and disc heights and vertebral body volumes were derived. Based on noninferiority testing on qualitative scores, fast images without deep-learning reconstruction were inferior to standard images for most categories. However, deep-learning reconstruction improved the average scores, and noninferiority was observed over 24 out of 45 comparisons (all with sagittal T2-weighted images while 4/5 comparisons with sagittal T1-weighted and axial T2-weighted images). Interobserver variability increased with 50 and 75% noise reduction factors. Deep-learning reconstructed fast images with 50% and 75% noise reduction factors had comparable disc heights and vertebral body volumes to standard images (r2≥ 0.86 for disc heights and r2≥ 0.98 for vertebral body volumes). This study demonstrated that deep-learning-reconstructed fast-acquisition images have the potential to provide noninferior image quality and comparable quantitative assessment to standard clinical images.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.