Abstract
The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.