Abstract

Research into technological problem solving has shown it to exist in a range of forms and draw upon different processes and knowledge types. This paper adds to this understanding by identifying procedural and epistemic differences in relation to task performance for pupils solving a well-defined technological problem. The study is theoretically grounded in a transformative epistemology of technology education. 50 pupils in small groups worked through a cantilever problem, the most and least successful solutions to which were identified using a Delphi technique. Time-interval photography, verbal interactions, observations and supplementary data formed a composite representation of activity which was analysed with successively less contrasting groups to isolate sustained differences. Analyses revealed key differences in three areas. First, more successful groups used better and more proactive process-management strategies including use of planning, role and task allocation with lower levels of group tension. Second, they made greater use of reflection in which knowledge associated with the technological solution was explicitly verblised. This was defined as ‘analytical reflection’ and reveals aspects of pupils’ qualitative technical knowledge. Third, higher-performing groups exhibited greater levels of tacit-procedural knowledge within their solutions. There was also evidence that less successful groups were less affected by competition and not as comprehensive in translating prior conceptual learning into their tangible technological solutions. Overall findings suggest that proactive management, and making contextual and technical connections, are important for pupils solving well-defined technological problems. This understanding can be used to support classroom pedagogies that help pupils learn to problem solve more effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.