Abstract

In this paper, we integrate fertility and educational choices into a scale-invariant model of directed technological change with non-renewable natural resources, in order to reveal the interaction between population dynamics, technological change, and natural resource depletion. In line with empirical regularities, skill-biased technological change induces a decline in population growth and a transitory increase in the depletion rate of natural resources. In the long-run, the depletion rate also declines in the skill intensity. A decline in population growth is harmful for long-run productivity growth, if R&D is subject to diminishing technological opportunities. The effectiveness of economic policies aimed at sustained economic growth thus hinges on its impact on long-run population growth given the sign of intertemporal spillovers in R&D with respect to existing technological knowledge. We demonstrate that an increase in relative research productivities or an education subsidy enhances long-run growth, if R&D is subject to diminishing technological opportunities, while an increase in the teacher–student ratio is preferable in terms of positive intertemporal knowledge spillovers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call