Abstract

Technological disasters are typically defined as events caused by the malfunctioning of a technological structure and/or some human error in controlling or handling the technology. One of the oldest recorded technological disasters is the collapse of the Marib Dam in Yemen 570 ad. The event, which is alluded to in the Qur’an, led to the migration of an estimated fifty thousand persons to other parts of the Arabian Peninsula, bringing an end to the then existing regional civilization. Dam breaches have remained a major source of technological disasters. The collapse of the Banqiao Dam and connected structures in southern Henan, China, following a period of unusually heavy rainfall in 1975 is said to have led to 171,000 deaths—potentially the deadliest technological disaster on record. Another major source of technological disasters is explosions. One of the earliest recorded industrial incidents of this kind is the 1626 explosion of the Wanggongchang Gunpowder factory, Beijing, which killed an estimated twenty thousand people. Again, explosions have remained a major cause of industrial disasters. The Bhopal gas tragedy of 1984 started with a runaway exothermic reaction, which led to a leak that caused the release of forty metric tons of toxic methyl isocyanate over the capital of Madhya Pradesh, India. The state’s government confirms 3,787 deaths, but some researchers suggest a figure of around eight thousand. The emergence of nuclear power in the 20th century has added a new dimension to technological disasters. The Chernobyl nuclear power plant accident of 1986 in Pripyat, Ukraine, led to thirty-one immediate fatalities, including twenty-nine firemen dying from acute radiation exposure. The WHO estimates long-term deaths at four thousand, while radiation scientists provide estimates as high as thirty to sixty thousand. The accident site now is part of a 2,600-square-kilometre exclusion zone. The 2011 Fukushima, Daiichi nuclear accident in Japan represents an example of a hybrid disaster where a natural catastrophe—in this case an earthquake and tsunami—disabled the cooling system of three reactors. No immediate radiation deaths were recorded, but the subsequent evacuation resulted in sixteen hundred fatalities. Compared to natural disasters, technological and hybrid disasters appear to be harder to predict and more difficult to classify, with discussions on causes and consequences being often politicized and contentious. The Convention on the Transboundary Effects of Industrial Accidents has promoted cooperation between European countries, before, during and after disasters since 2000, and represents the first international agreement of this kind.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call