Abstract

Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.