Abstract

As a non-thermally stable product, nanoemulsion followed by an encapsulation process was fabricated to enhance the techno-functional performance and sustainable applications of Lavandula angustifolia essential oil (La.EO). Integrated ultrasound-microwave techniques were used to enhance the release of Clevenger-hydrodistillation isolation of La.EO. Refined, bleached, and deodorized sunflower oil (RBDSFo) was used as a high unsaturated lipid-carrier type. Whey Protein Isolate (WPI, 95%) was used as a natural-biodegradable polymer wall material to formulate and stabilize Oil-in-Water nanoemulsion (O/W-NE). DLS, CLSM, and TEM were used to study the techno-functional characteristics of La.EO-nanoparticles. SEM, XRD, and FTIR spectroscopy were used to study the efficiency of the encapsulation process of La.EO. The fabricated formulations using a High-pressure Homogenizer showed a highly efficient at reducing the interfacial tension of O/W-NE interfaces. That led to produce nano-scaled droplets reached 128.8 d.nm with a polydispersity index of 0.151, and a ζ-potential of −42.1 mV. The optimized formulation of nanoemulsion showed a slight change in droplet size, PdI, and ζ-potential through 28 days of storage at ambient temperature. La.EO-nanoemulsion was stable against aggregation and coalescence at thermal destabilizing stresses similar to that can be exposed to in the commercial storage conditions (5, 25 and 45 °C) at neutral pH. The findings of this investigation showed that the thermal stability of La.EO can be enhanced through the encapsulation process within edible bio-polymers using both WPI and RBDSFo. In addition, La.EO nanoparticles demonstrated a great potential to be used to enhance the release of bioactive components coated in O/W-NE, as well as, to be used as pathogenic antibacterial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.