Abstract

This study was conducted to design a parabolic dish concentrator box solar still without a glass cover combined with a thermoelectric condensing duct. The parabolic set reflects the sun's rays beneath the basin and the vapor generated in the basin is sucked by a fan with variable volume flow rate into the condensing duct, which is surrounded by four thermoelectrics cooling modules. The performance of non-cover box solar still with thermoelectric is reported based on the component temperature, distilled water production, energy, exergy, energy payback period, energy production factor, economic, exergoeconomic, environmental, enviroeconomic, exergoenvironmental, exergoenviroeconomic, and water hygiene assessment. In the optimal case, in which the fan sucks the vapor at a volume rate of 300 L/min, the average winter daily cumulative distilled water, energy efficiency, and exergy efficiency were enhanced by 25.6%, 4.88%, and 1.06%, respectively, compared to the case, which the fan is off. The cost of distilled water production and the payback period in the optimal case are 0.0056 $/L/m2 and 114 days, respectively. Also, the techno-enviro-exergo-economic findings revealed that the parabolic dish concentrator box solar still with thermoelectric in terms of enviroeconomic and exergoenviroeconomic can create a financial reserve of $320.02 and $50.32, respectively. The distilled water produced by the desalination system is safe in terms of hygiene and drinking ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call