Abstract
Perovskite/Silicon (PS) tandem solar cells have attracted much interest over recent years. However, the most popular crystalline silicon solar cells utilized in tandems require complicated fabrication processes mainly including texturization, diffusion, passivation and metallization, which takes up much cost in photovoltaic market. Here, we report a facile graphene/silicon (Gr/Si) solar cell featuring of low-temperature (≤200 °C) processing and an efficiency of 13.56%. For reducing the heat dissipation loss of high energy photon, the perovskite solar cell (PSC) with a wide band gap of 1.76 eV was adopted as the top cell for the tandem. To reduce the loss of parasitic absorption in hole transport layers (HTLs), thickness of Spiro-OMeTAD is re-optimized by compromising the efficiency and the optical transmittance of the devices. As a result, the semitransparent top perovskite solar cell yields a highest efficiency of 13.35%. Furthermore, we firstly achieved a low-temperature-processed four-terminal (4-T) perovskite/graphene-silicon (PGS) heterojunction tandem solar cell with the efficiency of 20.37%. The levelized cost of electricity (LCOE) of PGS 4-T modules were estimated to a competitive price, exhibiting much greater potential for practical application compared to that of PS 4-T modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.