Abstract

PV system generates electricity with minimum environmental impact than conventional fossil fuel sources. Large-scale solar deployment reduces greenhouse gas emission and consequently reduces the effects of global warming. In late of 2014, the Indian government announced an ambitious target of 100 GW installation capacity of solar PV systems by 2022. Since then, India has achieved notable progress towards this goal and has installed 20 GW cumulative solar capacity with 9.6 GW in 2017 alone. Based on the 2015 MIT Energy Initiative, by 2050, a major fraction of the world’s electric power will come from solar sources. However, this poses many technical and economic challenges on the electrical infrastructure. In this chapter, we focus on the US case, by studying the technical and economic potentials of large-scale deployment of the most commonly recognized types of solar; photovoltiac (PV) and concentrated solar power (CSP) at different locations in the US. The technical potential is assessed based on grid interconnection topologies, and solar system performance. The economic potential is evaluated based on several metrics such as the levelized avoided cost of energy (LACE) and levelized cost of electricity (LCOE), and the possibility of integration into the electricity markets. The economic potential also covers the subsidies, taxes, policies, and incentives for large-scale solar deployment. Two simulation case studies are implemented on two large-scale solar PV and CSP projects at different locations in the US to evaluate their techno-economic potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call