Abstract

Small-scale photovoltaic (PV) power systems have been proven to be successful in generating electricity, conserving fossil fuels, and reducing greenhouse gas emissions in the residential sector, which is one of the largest consumers of energy. In Algeria, to reduce energy consumption in this sector, the authorities are considering implementing a policy that would encourage grid-connected residential PV systems. This paper presents a techno-economic assessment of grid-connected residential PV systems in four climate zones in Algeria. This work was performed using HOMER software for two different PV system configurations, grid/PV and grid/PV/battery. The technical performances of the considered systems were evaluated through the assessment of the self-consumption and self-sufficiency, while the net present value (NPV), internal rate of return (IRR), profitability index (PI), and discounted payback period (DPBP) were used to determine their feasibility. A sensitivity analysis was carried out to evaluate the effects of feed-in tariff (FiT), battery costs, and PV array capacity on the profitability of the systems. The results revealed that the grid/PV systems are technically and economically feasible in all of the four climate zones. For the grid/PV/battery systems, the grant of battery costs and the development of a regional FiT system are recommended. This article provides a tool for policymakers to assess the technical and financial performance of residential solar PV systems to develop adequate policy supports and tariff structures for Algeria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call