Abstract

The modern concept of “biorefinery” is dominantly based on chemical pulp mills to create more value than cellulose pulp fibres, and energy from the dissolved lignins and hemicelluloses. This concept is characterized by the conversion of biomass into various bio-based products. It includes thermochemical processes such as gasification and fast pyrolysis. In thermo-mechanical pulp (TMP) mills, the feedstock available to the gasification-based biorefinery is significant, including logging residues, bark, fibre material rejects, bio-sludges and other available fuels such as peat, recycled wood and paper products. On the other hand, mechanical pulping processes consume a great amount of electricity, which may account for up to 40% of the total pulp production cost. The huge amount of purchased electricity can be compensated for by self-production of electricity from gasification, or the involved cost can be compensated for by extra revenue from bio-transport fuel production. This work is to study co-production of bio-automotive fuels, bio-power, and steam via gasification of the waste biomass streams in the context of the mechanical pulp industry. Ethanol and substitute natural gas (SNG) are chosen to be the bio-transport fuels in the study. The production processes of biomass-to-ethanol, SNG, together with heat and power, are simulated with Aspen Plus. Based on the model, the techno-economic analysis is made to evaluate the profitability of bio-transport fuel production when the process is integrated into a TMP mill.The mathematical modelling starts from biomass gasification. Dual fluidized bed gasifier (DFBG) is chosen for syngas production. From the model, the yield and composition of the syngas and the contents of tar and char can be calculated. The model has been evaluated against the experimental results measured on a 150KWth Mid Sweden University (MIUN) DFBG. As a reasonable result, the tar content in the syngas decreases with the gasification temperature and the steam to biomass (S/B) ratio. The biomass moisture content is a key parameter for a DFBG to be operated and maintained at a high gasification temperature. The model suggests that it is difficult to keep the gasification temperature above 850 ℃ when the biomass moisture content is higher than 15.0 wt.%. Thus, a certain amount of biomass or product gas needs to be added in the combustor to provide sufficient heat for biomass devolatilization and steam reforming.For ethanol production, a stand-alone thermo-chemical process is designed and simulated. The techno-economic assessment is made in terms of ethanol yield, synthesis selectivity, carbon and CO conversion efficiencies, and ethanol production cost. The calculated results show that major contributions to the production cost are from biomass feedstock and syngas cleaning. A biomass-to-ethanol plant should be built over 200 MW.In TMP mills, wood and biomass residues are commonly utilized for electricity and steam production through an associated CHP plant. This CHP plant is here designed to be replaced by a biomass-integrated gasification combined cycle (BIGCC) plant or a biomass-to-SNG (BtSNG) plant including an associated heat & power centre. Implementing BIGCC/BtSNG in a mechanical pulp production line might improve the profitability of a TMP mill and also help to commercialize the BIGCC/BtSNG technologies by taking into account of some key issues such as, biomass availability, heat utilization etc.. In this work, the mathematical models of TMP+BIGCC and TMP+BtSNG are respectively built up to study three cases: 1) scaling of the TMP+BtSNG mill (or adding more forest biomass logging residues in the gasifier for TMP+BIGCC); 2) adding the reject fibres in the gasifier; 3) decreasing the TMP SEC by up to 50%.The profitability from the TMP+BtSNG mill is analyzed in comparison with the TMP+BIGCC mill. As a major conclusion, the scale of the TMP+BIGCC/BtSNG mill, the prices of electricity and SNG are three strong factors for the implementation of BIGCC/BtSNG in a TMP mill. A BtSNG plant associated to a TMP mill should be built in a scale above 100 MW in biomass thermal input. Comparing to the case of TMP+BIGCC, the NR and IRR of TMP+BtSNG are much lower. Political instruments to support commercialization of bio-transport fuel are necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.