Abstract

Primary post-cultivation biomass recovery (cell culture removal from API-rich solutions) is essential in biopharmaceutical manufacturing. Centrifugation and depth filtration are dominant industrial primary recovery technologies, but mechanistic dynamic models suitable for performance evaluation are scarce. This paper uses established literature models to present and analyse optimal operation strategies for integrated process designs of fed-batch or perfusion CHO bioreactors (for mAb cultivation via CHO cultures), with an explicit rotational disk (dynamic crossflow) filtration model (for primary recovery). A rigorous DAE filter model (Marke et al., 2020) is employed here, to evaluate system performance. Dynamic optimisation of bioreactor-filter systems has been completed for different bioreactor types, filter arrangements and feed manipulations, considering the same annual mAb plant production target. A technoeconomic analysis of optimal designs addresses industrial viability, confirming a clear cost advantage of fed-batch reactors combined with stacked membrane microfilters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call