Abstract
Hybrid configurations that combine two different solar thermal collector technologies are considered to improve the economic competitiveness of solar systems in district heating applications. However, the performance of these systems in the industrial sector has been scarcely studied. This study evaluates the energetic and economic potential of hybrid systems with flat plate and parabolic trough collectors under different industrial process temperatures and radiation levels. To enable this evaluation, a hybrid field sizing methodology was developed. The results showed that the hybrid system could achieve high solar fractions with a lower levelized cost of heat than parabolic trough collector individual systems and smaller solar field areas than flat plate collector individual systems. Furthermore, the hybrid system with approximately 50% flat plate collectors reached monthly solar fractions up to 91% higher than the individual flat plate collector alternative. The seasonal performance demonstrates that the hybrid configuration could have great potential for applications with higher demand in the summer months, such as solar cooling with absorption chillers and solar water desalination for crop irrigation. This study contributes to the understanding of the potential of hybrid systems in the industrial sector and presents tools and insights for future research of hybrid solar thermal configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.