Abstract

Integrating a thermal energy storage (TES) in a concentrating solar power (CSP) plant allows for continuous operation even during times when solar radiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an encapsulated phase change material thermocline storage system are integrated with a CSP power tower system model to investigate its dynamic performance. The influence of design parameters of the storage system is studied for different solar multiples of the plant to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip exergetic efficiency greater than 95% and storage cost less than $15/kWht for a minimum discharge period of 6 hours. From the design windows, optimum designs of the storage system based on minimum LCOE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, this study presents the first effort to construct a latent thermal energy storage (LTES)-integrated CSP plant model, that can help decision makers in assessing the impact, cost and performance of a latent thermocline energy storage system on power generation from molten salt power tower CSP plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.