Abstract

The international green hydrogen supply chain (HSC) is anticipated to play a pivotal role in the ongoing energy transition. Our research endeavors to assess the implications of considering fast timescale volatility in renewable energy sources and uncertainties in demand on the design and evaluation of the international green hydrogen supply chain. To achieve this objective, we introduce a comprehensive bi-level optimization method for evaluating the economic viability of the HSC between nations. In the upper level of the optimization, capacity investments are determined using Bayesian optimization and Hyperband (BOHB) for multiple components, including turbines, PV panels, batteries, water electrolyzers, hydrogen liquefaction plants, hydrogen tanks, and liquid hydrogen (LH2) ships. The lower level focuses on the optimal scheduling of LH2 shipments and the operation of each facility, utilizing a mixed-integer linear programming (MILP) model that considers lead time and uncertainties in both supply and demand. We conduct case studies involving nine projects, encompassing three potential import and export countries, to demonstrate and analyze the effectiveness of the proposed framework. Furthermore, we delve into the impacts of various factors, such as economies of scale, lead time, and the minimum operating constraint of the electrolyzer, on the economic performance of the green HSC project. The study also explores the optimal balance between facility installation scales and their relationships with techno-economic parameters, providing valuable insights for future research, technological advancement and supply chain design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call