Abstract
The success of a large scale macroalgae-based biorefinery is dependent on the demonstration of favorable system economics and environmental sustainability. This study uses detailed process modeling to quantify the mass and energy flows through the various unit operations required for a novel free-floating macroalgae biorefinery concept. The modular process model served as the foundation for the techno-economic and global warming potential analyses used to quantify the sustainability of the proposed concept. This work includes detailed techno-economic results for a complete macroalgae cultivation and conversion system with multiple hatchery configurations and several emerging technologies. System optimization was achieved through the evaluation of various technology options for each unit operation. Technologies considered include traditional twine and textile substrate hatchery configurations, drone assisted seeding and biomass transport, mechanized line seeding and harvesting, adhesive spore mixtures that simplify seeding operations and improve hatchery energetics, and hydrothermal liquefaction to produce upgradable biocrude. Outputs from the system include renewable diesel (R100), naphtha, biochar, nitrogen and phosphorus fertilizers, and aqueous/solid waste streams. Three different system pathways were explored, yielding a biomass production cost ranging from $210 to $565 per dry metric ton and a minimum fuel selling price from $1.35 to $2.91 per liter of gasoline equivalent. Stochastic manipulation of the process model and sensitivity analyses support these results. The global warming potential analysis shows net greenhouse gas emissions ranging from 14 to 29 gCO2-eq MJ−1, supported by stochastic and sensitivity analyses. The recommendations from this work highlight critical areas for research and development investment such that a sustainable macroalgae cultivation and conversion system can be realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.