Abstract

European Union bioeconomy policy emphasizes that the production of renewable transportation fuels should replace fossil fuels as much as possible. In particular, the utilization of waste or side-stream lignocellulosic materials for fuel production is highly recommended. Moreover, future crises forcing a reliance on locally available sources for fuels and energy may become increasingly common. Barley straw, a common agricultural residue in northern Europe, is a potential raw material for bioalcohol production via fermentation. In this study, the technoeconomic and environmental sustainability of bioethanol and biobutanol production from barley straw were evaluated. When compared with fossil gasoline production and use, the greenhouse gas emissions reduction 77.6% and 72.1% were achieved for ethanol and butanol production, respectively. Thus, the emission reduction of 65% for biofuels demanded by the European Union renewable energy directive was achieved in both biofuel production processes evaluated. However, our results indicated that ethanol production from barley straw, a well-known and mature technology, was an economically feasible process (NPV positive, IRR 20%) but that butanol production with Clostridium species through acetone-butanol-ethanol fermentation has still technoeconomic challenges to overcome (NPV negative, IRR below 10%). This was mainly due to the low yield and high recovery costs of butanol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call