Abstract
In this present investigation, we applied an eco-friendly bacterial cellulose (BC) membrane along with a polyethylene (PE) separator as a separator for lead-acid battery systems. The key factor of the research is to lower the cost of the lead-acid battery by introducing the BC membrane along with a thin PE separator. The specific surface areas of the BC membrane and the PE separator were 46.72 and 35.89 m2 g–1, respectively, with high porosity, which can enhance the electrolyte uptake and movement. The identified pore sizes of the BC membrane and the PE separator are 13.67 and 56.18 nm, respectively. The closely arranged microfibrils in the BC membrane with the smaller pore size can uptake a high amount of electrolyte, and it can hold it for a long period with the hydrogen interactions. In addition, the BC membrane and the PE separator exhibited higher thermal stabilities. The water uptake property of the BC membrane is 130% at 30 °C, which results in considerable electrolyte uptake. The ion exchange capa...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.