Abstract

Distributed waste-to-hydrogen (WtH) systems are a potential solution to tackle the dual challenges of sustainable waste management and zero emission transport. Here we propose a concept of distributed WtH systems based on gasification and fermentation to support hydrogen fuel cell buses in Glasgow. A variety of WtH scenarios were configured based on biomass waste feedstock, hydrogen production reactors, and upstream and downstream system components. A cost-benefit analysis (CBA) was conducted to compare the economic feasibility of the different WtH systems with that of the conventional steam methane reforming-based method. This required the curation of a database that included, inter alia , direct cost data on construction, maintenance, operations, infrastructure, and storage, along with indirect cost data comprising environmental impacts and externalities, cost of pollution, carbon taxes and subsidies. The levelized cost of hydrogen (LCoH) was calculated to be 2.22 GB P/kg for municipal solid waste gasification and 2.02 GB P/kg for waste wood gasification. The LCoHs for dark fermentation and combined dark and photo fermentation systems were calculated to be 2.15 GB P/kg and 2.29 GB P/kg. Sensitivity analysis was conducted to identify the most significant influential factors of distributed WtH systems. It was indicated that hydrogen production rates and CAPEX had the largest impact for the biochemical and thermochemical technologies, respectively. Limitations including high capital expenditure will require cost reduction through technical advancements and carbon tax on conventional hydrogen production methods to improve the outlook for WtH development. • Economic feasibility of waste-to-hydrogen technologies systematically presented. • Steam methane reforming as a conventional hydrogen production method for comparison. • Organic fraction municipal solid waste, wood waste and wet waste (sludge) considered. • Levelized cost of hydrogen calculated as the main economic indicator. • The most sensitive variables are the efficiency and the energy density of feedstock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call