Abstract

Increasing attention is being paid to the oxy-combustion technique of coal-fired power plants because CO2 produced from fossil fuel combustion can be captured and sequestrated by it. However, there are many questions about the economic properties of the oxy-combustion technique. In this paper, a detailed techno-economic evaluation study was performed on three typical power plants (2 × 300 MW subcritical, 2 × 600 MW supercritical, 2 × 1000 MW ultra supercritical), as conventional air fired and oxycombustion options in China, by utilizing the authoritative data published in 2010 for the design of coal-fired power plants. Techno-economic evaluation models were set up and costs of electricity generation, CO2 avoidance costs as well as CO2 capture costs, were calculated. Moreover, the effects of CO2 tax and CO2 sale price on the economic characteristics of oxy-combustion power plants were also considered. Finally, a sensitivity analysis for parameters such as coal sample, coal price, air separation unit price, flue gas treatment unit price, CO2 capture efficiency, as well as the air excess factor was conducted. The results revealed that: (1) because the oxy-combustion technique has advantages in thermal efficiency, desulfurization efficiency and denitration efficiency, oxy-combustion power plants will reach the economic properties of conventional air fired power plants if, (a) the CO2 emission is taxed and the high purity CO2 product can be sold, or (b) there are some policy preferences in financing and coal price for oxy-combustion power plants, or (c) the power consumption and cost of air separation units and flue gas treatment units can be reduced; (2) from subcritical plants to supercritical and finally ultra-supercritical plants, the economics are improving, regardless of whether they are conventional air fired power plants or oxy-combustion power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.