Abstract

A treatment chain including nanofiltration, crystallization and multi-effect distillation (MED) is for the first time proposed for the treatment of an effluent produced during the regeneration of Ion Exchange resins employed for water softening. The goal is to recover the minerals and to restore the regenerant solution to be reused in the next regeneration cycle. MED is the most crucial unit of the treatment chain from an economic point of view. A techno-economic analysis on the MED unit was performed and a novel performance indicator, named Levelized Brine Cost, was introduced as a measure of the economic feasibility of the process. Different scenarios were analysed, assuming different thermal energy sources and configurations (plane-MED or MED-TVC). It was found that the plane-MED fed by waste-heat at 1 bar is very competitive, leading to a reduction of 50% of the fresh regenerant current cost. Moreover, the thermal energy cost of 20US$/MWhth was identified as the threshold value below which producing regenerant solution in the MED is economically more advantageous than buying a fresh one. Overall, MED allows reducing the environmental impact of the industrial process and it results competitive with the state of the art for a wide range of operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.