Abstract

Decentralized, smart indoor cultivation systems can produce herbs and vegetables for fresh and healthy daily nutrition of the urban population. This study assesses technical and resource requirements, productivity, and economic viability of the “Smart Office Farm” (SOF), based on a 5-week production cycle of curled lettuce, lolo rosso, pak choi and basil at three photosynthetic photon flux density (PPFD) levels using a randomized block design. The total fresh matter yield of consumable biomass of all crops was 2.5 kg m−2 with operating expenses (without labor costs) of EUR 53.14 kg−1; more than twice as expensive compared to large-scale vertical farm and open-field cultivation. However, there is no need to add trade margins and transportation costs. The electricity supply to SOF is 73%, by far the largest contributor to operational costs of office-based crop production. Energetic optimizations such as a more homogeneous PPFD distribution at the plant level, as well as adaptation of light quality and quantity to crop needs can increase the economic viability of such small indoor farms. With reduced production costs, urban indoor growing systems such as SOF can become a viable option for supporting fresh and healthy daily nutrition in urban environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call